Generalized Monotone Iterative Technique for Caputo Fractional Differential Equation with Periodic Boundary Condition via Initial Value Problem
نویسندگان
چکیده
منابع مشابه
On boundary value problem for fractional differential equations
In this paper, we study the existence of solutions for a fractional boundary value problem. By using critical point theory and variational methods, we give some new criteria to guarantee that the problems have at least one solution and infinitely many solutions.
متن کاملMonotone-iterative Technique of Lakshmikantham for the Initial Value Problem for a Differential Equation with a Step Function
متن کامل
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملPositive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solution for boundary value problem of fractional dierential equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2012
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2012/842813